

Tropical Mathematics

Nicola Arghittu Bianca Della Libera Gioella Lorenzon Marina Vitali Camilla Viviani Jing Jing Xu

teachers:

Fabio Breda Francesco Maria Cardano Alberto Meneghello Francesco Zampieri

ISISS M. Casagrande

April 7, 2017 - Cluj-Napoca, Romania

Problem

- Overview
- What Arithmetics? (number sets, operations and their properties)
- What Algebra? (polynomials and functions, factorizations, roots)
- 3 What Geometry? (planar algebraic curves)

Problem

- Overview
- What Arithmetics? (number sets, operations and their properties)
- 2 What Algebra? (polynomials and functions, factorizations, roots)
- 3 What Geometry? (planar algebraic curves)

Problem

- Overview
- What Arithmetics? (number sets, operations and their properties)
- What Algebra? (polynomials and functions, factorizations, roots)
- 3 What Geometry? (planar algebraic curves)

Problem

- Overview
- What Arithmetics? (number sets, operations and their properties)
- What Algebra? (polynomials and functions, factorizations, roots)
- 3 What Geometry? (planar algebraic curves)

- What numbers can we eventually build within this arithmetics?
 - ▶ What numbers do we consider?
- Can we always consider \cdot an iteration of +, and $^{\wedge}$ of \cdot ? $2 \cdot 3 = 2 + 2 + 2$, but $2 \cdot \sqrt{5} = ?$
 - ▶ What operations can we define?
- $-2, \frac{1}{2}, \sqrt{2}, \dots$
 - ▷ Do these symbols have the same meaning in tropical arithmetics?

- What numbers can we eventually build within this arithmetics?
 - ▶ What numbers do we consider?
- Can we always consider \cdot an iteration of +, and $^{\wedge}$ of \cdot ? $2 \cdot 3 = 2 + 2 + 2$, but $2 \cdot \sqrt{5} = ?$
 - ▶ What operations can we define?
- $-2, \frac{1}{2}, \sqrt{2}, \dots$
 - ▶ Do these symbols have the same meaning in tropical arithmetics?

- What numbers can we eventually build within this arithmetics?
 - ▶ What numbers do we consider?
- Can we always consider \cdot an iteration of +, and $^{\wedge}$ of \cdot ? $2 \cdot 3 = 2 + 2 + 2$, but $2 \cdot \sqrt{5} = ?$
 - ▶ What operations can we define?
- $-2, \frac{1}{2}, \sqrt{2}, \dots$
 - ▶ Do these symbols have the same meaning in tropical arithmetics?

- What numbers can we eventually build within this arithmetics?
 - ▶ What numbers do we consider?
- Can we always consider \cdot an iteration of +, and $^{\wedge}$ of \cdot ? $2 \cdot 3 = 2 + 2 + 2$, but $2 \cdot \sqrt{5} = ?$
 - ▶ What operations can we define?
- $-2, \frac{1}{2}, \sqrt{2}, \dots$
 - ▷ Do these symbols have the same meaning in tropical arithmetics?

Example: From \mathbb{N} to \mathbb{Z}

In \mathbb{N} , neither \oplus nor \odot admits inverse elements. Can we add them?

- \oplus **NO**: $2 \oplus 3 = 2$, $2 \oplus 4 = 2$, hence $2 \ominus 2 = ?!$ is it 3, 4, ...?
- · YES:

Standard Arithmetics

Tropical Arithmetics

Standard Arithmetics

Tropical Arithmetics

Standard Arithmetics

Tropical Arithmetics

$$(\mathbb{N},+,\cdot),\wedge$$
 inverses $+$
$$(\mathbb{Z},\stackrel{-}{+},\cdot),\wedge$$

Properties in $(\mathbb{R}, \oplus, \otimes)$

PROPERTY	\oplus	\odot
Commutative	√	\checkmark
Associative	√	\checkmark
Dissociative	√	\checkmark
Neutral element	Χ	√
Symmetric element	Χ	✓
Distributive	\checkmark	

Polynomials

By combining numbers and variables with the operations \oplus , \odot , we get two objects:

Definition

A tropical **monomial** is a tropical product of numbers and variables, where repetitions are allowed.

A tropical polynomial is a tropical sum of tropical monomials.

Example

$$2 \odot x^{\otimes 4} \odot y^{\otimes 2} \oplus 4 \odot x \odot y^{\otimes 6}$$

Polynomials

By combining numbers and variables with the operations \oplus , \odot , we get two objects:

Definition

A tropical **monomial** is a tropical product of numbers and variables, where repetitions are allowed.

A tropical polynomial is a tropical sum of tropical monomials.

Example:

$$2 \odot x^{\otimes 4} \odot y^{\otimes 2} \oplus 4 \odot x \odot y^{\otimes 6}$$

$$f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: y = p(x_1, \dots, x_n)$$

$$p(x) = -1 \odot x^{\otimes 2} \oplus 0 \odot x \oplus 3$$

$$\min\{ -1 + 2 \cdot x , 0 + 1 \cdot x , 3 + 0 \cdot x \}$$

$$f_p(x) = \begin{cases} 2 \cdot x - 1 & \text{if } x < 1 \\ x & \text{if } 1 \le x < 3 \\ 3 & \text{if } 3 \le x \end{cases}$$

$$f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: \ y = p(x_1, \dots, x_n)$$

$$p(x) = -1 \odot x^{\odot 2} \oplus 0 \odot x \oplus 3$$

$$\min\{ -1 + 2 \cdot x , 0 + 1 \cdot x , 3 + 0 \cdot x \}$$

$$f_p(x) = \begin{cases} 2 \cdot x - 1 & \text{if } x < 1 \\ x & \text{if } 1 \le x < 3 \\ 3 & \text{if } 3 \le x \end{cases}$$

$$f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: \ y = p(x_1, \dots, x_n)$$

$$p(x) = -1 \odot x^{\odot 2} \oplus 0 \odot x \oplus 3$$

$$\min\{ -1 + 2 \cdot x , 0 + 1 \cdot x , 3 + 0 \cdot x \}$$

$$f_p(x) = \begin{cases} 2 \cdot x - 1 & \text{if } x < 1 \\ x & \text{if } 1 \le x < 3 \\ 3 & \text{if } 3 \le x \end{cases}$$

To every polynomial p we associate a function $f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: y = p(x_1, \dots, x_n)$

$$p(x) = -1 \odot x^{\odot 2} \oplus 0 \odot x \oplus 3$$

$$\min\{ -1 + 2 \cdot x , 0 + 1 \cdot x , 3 + 0 \cdot x \}$$

$$f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: \ y = p(x_1, \dots, x_n)$$

$$p(x) = -1 \odot x^{\odot 2} \oplus 1 \odot x \oplus 3$$

$$\min \{ -1 + 2 \cdot x , | 1 + 1 \cdot x |, | 3 + 0 \cdot x | \}$$

$$f_p(x) = \begin{cases} 2 \cdot x - 1 & \text{if } x < 2 \\ - \\ 3 & \text{if } 2 \le x \end{cases}$$

$$f_p: \mathbb{R}^n \longrightarrow \mathbb{R}: \ y = p(x_1, \dots, x_n)$$

$$p(x) = -1 \odot x^{\odot 2} \oplus 2 \odot x \oplus 3$$

$$\min \{ -1 + 2 \cdot x , 2 + 1 \cdot x , 3 + 0 \cdot x \}$$

$$f_p(x) = \begin{cases} 2 \cdot x - 1 & \text{if } x < 2 \\ - & \\ 3 & \text{if } 2 \le x \end{cases}$$

Equality between polynomials

 \implies the correspondence $p \longrightarrow f_p$ is **not** injective

Contrarily to the standard algebra ©

How can we obtain this? By collecting polynomials associated to the same polynomial function in equivalence classes:

Classes of equivalence

$$[a \odot x^{\otimes 2} \oplus c] = \{a \odot x^{\otimes 2} \oplus b \odot x \oplus c \mid b^{\otimes 2} \ge a \odot c\}$$
$$a \odot x^{\otimes 2} \oplus b \odot x \oplus c] = \{a \odot x^{\otimes 2} \oplus b \odot x \oplus c \mid b^{\otimes 2} < a \odot c\}$$

This way the correspondence is injective @

Equality between polynomials

 \implies the correspondence $p \longrightarrow f_p$ is **not** injective

Contrarily to the standard algebra ©

How can we obtain this? By collecting polynomials associated to the same polynomial function in equivalence classes:

Classes of equivalence

$$[a \odot x^{\otimes 2} \oplus c] = \{a \odot x^{\otimes 2} \oplus b \odot x \oplus c \mid b^{\otimes 2} \ge a \odot c\}$$

$$[a \odot x^{\otimes 2} \oplus b \odot x \oplus c] = \{a \odot x^{\otimes 2} \oplus b \odot x \oplus c \mid b^{\otimes 2} < a \odot c\}$$

This way the correspondence is injective ©

Sum of products ---→ product of sums

```
(suppose a \neq +\infty)

1 a \odot x \oplus b = a \odot (x \oplus b \odot a)

2 a \odot x^{\otimes 2} \oplus b \odot x \oplus c =
= a \odot (x \oplus b \odot a) \odot (x \oplus c \odot b) if b^{\otimes 2} < a \odot c
= a \odot (x \oplus (c \odot a) \oslash 2) if b^{\otimes 2} \geq a \odot c

:

n a_n \odot x^{\otimes n} \oplus \dots a_1 \odot x \oplus a_0
= a_n \odot (x \oplus (a_n \oplus a_n)) \odot \dots (x \oplus (a_n \oplus a_n \oplus a_n)) \odot \dots \odot (x \oplus (a_n \oplus a_n))
```

Fundamental Theorem of Algebra

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ is algebraically closed

Sum of products ---→ product of sums

```
(suppose a \neq +\infty)

1 a \odot x \oplus b = a \odot (x \oplus b \odot a)

2 a \odot x^{\otimes 2} \oplus b \odot x \oplus c =
= a \odot (x \oplus b \odot a) \odot (x \oplus c \odot b) if b^{\otimes 2} < a \odot c
= a \odot (x \oplus (c \odot a) \oslash 2) if b^{\otimes 2} \geq a \odot c

\vdots

n a_n \odot x^{\otimes n} \oplus \ldots a_1 \odot x \oplus a_0
= a_n \odot (x \oplus (a_{n-1} \odot a_n)) \odot \ldots (x \oplus (a_{n-k-1} \odot a_{n-k})) \odot \ldots \odot (x \oplus (a_0 \odot a_1))
```

Fundamental Theorem of Algebra

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ is algebraically closed

product of sums Sum of products

```
(suppose a \neq +\infty)
           a \odot x \oplus b = a \odot (x \oplus b \odot a)
   2 a \odot x^{\otimes 2} \oplus b \odot x \oplus c =
                                                                   if b^{\otimes 2} < a \odot c
          = a \odot (x \oplus b \odot a) \odot (x \oplus c \odot b)
                                                                     if b^{\otimes 2} > a \odot c
          = a \odot (x \oplus (c \odot a) \oslash 2)
```

Tropical Mathematics

9 / 13

Sum of products ---→ product of sums

```
(suppose a \neq +\infty)

1 a \odot x \oplus b = a \odot (x \oplus b \odot a)

2 a \odot x^{\otimes 2} \oplus b \odot x \oplus c =
= a \odot (x \oplus b \odot a) \odot (x \oplus c \odot b) if b^{\otimes 2} < a \odot c
= a \odot (x \oplus (c \odot a) \odot 2) if b^{\otimes 2} \geq a \odot c

\vdots

n a_n \odot x^{\otimes n} \oplus \dots a_1 \odot x \oplus a_0
= a_n \odot (x \oplus (a_{n-1} \odot a_n)) \odot \dots (x \oplus (a_{n-k-1} \odot a_{n-k})) \odot \dots \odot (x \oplus (a_0 \odot a_1))
```

Fundamental Theorem of Algebra

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ is algebraically closed

Factorization

Sum of products ---→ product of sums

```
(suppose a \neq +\infty)

1 a \odot x \oplus b = a \odot (x \oplus b \odot a)

2 a \odot x^{\otimes 2} \oplus b \odot x \oplus c =
= a \odot (x \oplus b \odot a) \odot (x \oplus c \odot b) if b^{\otimes 2} < a \odot c
= a \odot (x \oplus (c \odot a) \oslash 2) if b^{\otimes 2} \geq a \odot c

\vdots

n a_n \odot x^{\otimes n} \oplus \dots a_1 \odot x \oplus a_0
= a_n \odot (x \oplus (a_{n-1} \odot a_n)) \odot \dots (x \oplus (a_{n-k-1} \odot a_{n-k})) \odot \dots \odot (x \oplus (a_0 \odot a_1))
```

Fundamental Theorem of Algebra

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ is algebraically closed.

• In standard arithmetics:

$$p(x) = a \cdot x^2 + b \cdot x + c = a \cdot (x - x_1) \cdot (x - x_2)$$

where x_1 and x_2 have both the property $p(x_i) = 0$ and are called **roots** (zeros) of p

What happens in the tropical arithmetics?

Again
$$p(x) = a \odot x^{\odot 2} \oplus b \odot x \oplus c = a \odot (x \oplus x_1) \odot (x \oplus x_2)$$

but now, neither $p(x_i) = 0$ nor $p(x_i) = +\infty$:

$$p(x) = -1 \odot x^{\otimes 2} \oplus x \oplus 3 = -1 \odot (x \oplus 1) \odot (x \oplus 3)$$

$$x_1 = 0 \odot -1 = 1$$
 $p(1) = -1 \odot 10^{-2} \oplus 1 \oplus 3 = \min\{-1 + 1 \cdot 2, 1, 3\} = \min\{1, 1, 3\} = \infty = 3 \odot 0 = 3$ $p(3) = -1 \odot 30^{-2} \oplus 3 \oplus 3 = \min\{-1 + 3 \cdot 2, 3, 3\} = \min\{5, 3, 3\} = \infty = 3 \odot 0 = 3$

 x_1 and x_2 are the values in which at least two monomials take the same value and,

Tropical Roots

• In standard arithmetics:

$$p(x) = a \cdot x^2 + b \cdot x + c = a \cdot (x - x_1) \cdot (x - x_2)$$

where x_1 and x_2 have both the property $p(x_i) = 0$ and are called **roots** (zeros) of p

What happens in the tropical arithmetics?

Again
$$p(x) = a \odot x^{\odot 2} \oplus b \odot x \oplus c = a \odot (x \oplus x_1) \odot (x \oplus x_2)$$
 but now, neither $p(x_i) = 0$ nor $p(x_i) = +\infty$:

$$p(x) = -1 \odot x^{\otimes 2} \oplus x \oplus 3 = -1 \odot (x \oplus 1) \odot (x \oplus 3)$$

$$x_1 = 0 \oplus 1 = 1$$
 $p(1) = 1 \oplus 1 \oplus 3 = \min\{1, 1, 3\} = 1$
 $x_2 = 3 \oplus 0 = 3$ $p(3) = -1 \oplus 3 \oplus 3 \oplus 3 = \min\{-1 + 3 \cdot 2, 3, 3\} = \min\{5, 3, 3\} = 1$

 x_1 and x_2 are the values in which at least two monomials take the same value and, at the same time, are the least of the polynomial.

Tropical Roots

• In standard arithmetics:

$$p(x) = a \cdot x^2 + b \cdot x + c = a \cdot (x - x_1) \cdot (x - x_2)$$

where x_1 and x_2 have both the property $p(x_i) = 0$ and are called **roots** (zeros) of p

What happens in the tropical arithmetics?

Again
$$p(x) = a \odot x^{\odot 2} \oplus b \odot x \oplus c = a \odot (x \oplus x_1) \odot (x \oplus x_2)$$
 but now, neither $p(x_i) = 0$ nor $p(x_i) = +\infty$:

$$p(x) = -1 \odot x^{\otimes 2} \oplus x \oplus 3 = -1 \odot (x \oplus 1) \odot (x \oplus 3)$$

 x_1 and x_2 are the values in which at least two monomials take the same value and, at the same time, are the least of the polynomial.

Tropical Roots

- In standard arithmetics:
- $p(x) = a \cdot x^2 + b \cdot x + c = a \cdot (x x_1) \cdot (x x_2)$ where x_1 and x_2 have both the property $p(x_i) = 0$ and are called **roots** (zeros) of p
- What happens in the tropical arithmetics?

Again
$$p(x) = a \odot x^{\otimes 2} \oplus b \odot x \oplus c = a \odot (x \oplus x_1) \odot (x \oplus x_2)$$
 but now, neither $p(x_i) = 0$ nor $p(x_i) = +\infty$:

$$p(x) = -1 \odot x^{\odot 2} \oplus x \oplus 3 = -1 \odot (x \oplus 1) \odot (x \oplus 3)$$

 x_1 and x_2 are the values in which at least two monomials take the same value and, at the same time, are the least of the polynomial.

Tropical Roots

• In standard arithmetics:

$$p(x) = a \cdot x^2 + b \cdot x + c = a \cdot (x - x_1) \cdot (x - x_2)$$

where x_1 and x_2 have both the property $p(x_i) = 0$ and are called **roots** (zeros) of p

What happens in the tropical arithmetics?

Again
$$p(x) = a \odot x^{\odot 2} \oplus b \odot x \oplus c = a \odot (x \oplus x_1) \odot (x \oplus x_2)$$
 but now, neither $p(x_i) = 0$ nor $p(x_i) = +\infty$:

$$p(x) = -1 \odot x^{\otimes 2} \oplus x \oplus 3 = -1 \odot (x \oplus 1) \odot (x \oplus 3)$$

 x_1 and x_2 are the values in which at least two monomials take the same value and, at the same time, are the least of the polynomial.

Tropical Roots

Geometric loci

In the traditional maths a geometric locus is the subset of points in space that satisfy a particular property (e.g. points of coordinates (x, y) satisfying some equations y = f(x) or being the root of some function F(x, y) = 0).

Tropical Algebraic Curve

A **tropical algebraic curve** in \mathbb{R}^n is the geometric locus of the tropical roots of a tropical polynomial $p(x_1, \ldots, x_n)$.

Example

A tropical polynomial in **two** variables x, y:

$$p(x,y) = -1 \odot x^{\odot 2} \oplus x \oplus 3$$

gives rise to a tropical curve in the Real plane \mathbb{R}^2 , that is two lines x=1 and x=3 (roots).

Geometric loci

In the traditional maths a geometric locus is the subset of points in space that satisfy a particular property (e.g. points of coordinates (x, y) satisfying some equations y = f(x) or being the root of some function F(x, y) = 0).

Tropical Algebraic Curve

A **tropical algebraic curve** in \mathbb{R}^n is the geometric locus of the tropical roots of a tropical polynomial $p(x_1, \ldots, x_n)$.

Example

A tropical polynomial in **two** variables x, y:

$$p(x,y) = -1 \odot x^{\odot 2} \oplus x \oplus 3$$

gives rise to a tropical curve in the Real plane \mathbb{R}^2 , that is two lines x=1 and x=3 (roots).

Geometric loci

In the traditional maths a *geometric locus* is the subset of points in space that satisfy a particular property (e.g. points of coordinates (x, y) satisfying some equations y = f(x) or being the root of some function F(x, y) = 0).

Tropical Algebraic Curve

A **tropical algebraic curve** in \mathbb{R}^n is the geometric locus of the tropical roots of a tropical polynomial $p(x_1, \ldots, x_n)$.

Example:

A tropical polynomial in **two** variables x, y:

$$p(x,y) = -1 \odot x^{\otimes 2} \oplus x \oplus 3$$

gives rise to a tropical curve in the Real plane \mathbb{R}^2 , that is two lines x = 1 and x = 3 (roots).

Examples: from tropical polynomials to algebraic curves

$$p(x,y) = \begin{cases} x^{\otimes 2} & \oplus & y^{\otimes 2} & \oplus & 1 \\ \min\{ x \cdot 2 , y \cdot 2 , 1 \} \end{cases}$$

$$A \qquad B \qquad C$$

$$A = B \le C$$

$$\begin{cases} 2 \cdot x = 2 \cdot y \\ 2 \cdot x \le 1 \end{cases} \implies \begin{cases} y = x \\ x \le \frac{1}{2} \end{cases}$$

$$C = B \le A$$

$$\begin{cases} 1 = 2 \cdot y \\ 1 \le 2 \cdot x \end{cases} \implies \begin{cases} y = \frac{1}{2} \\ x \ge \frac{1}{2} \end{cases}$$

$$C = A \le B$$

$$\begin{cases} 1 = 2 \cdot x \\ 1 < 2 \cdot y \end{cases} \implies \begin{cases} x = \frac{1}{2} \\ y > \frac{1}{2} \end{cases}$$

Examples: from tropical polynomials to algebraic curves

$$p(x,y) = \begin{cases} x^{\otimes 2} & \oplus & y^{\otimes 2} & \oplus & 1 \\ \min\{ x \cdot 2 , y \cdot 2 , 1 \} \end{cases}$$

$$A \qquad B \qquad C$$

$$A = B \le C$$

$$\begin{cases} 2 \cdot x = 2 \cdot y \\ 2 \cdot x \le 1 \end{cases} \implies \begin{cases} y = x \\ x \le \frac{1}{2} \end{cases}$$

$$C = B \le A$$

$$\begin{cases} 1 = 2 \cdot y \\ 1 \le 2 \cdot x \end{cases} \implies \begin{cases} y = \frac{1}{2} \\ x \ge \frac{1}{2} \end{cases}$$

$$C = A \le B$$

$$\begin{cases} 1 = 2 \cdot x \\ 1 \le 2 \cdot y \end{cases} \implies \begin{cases} x = \frac{1}{2} \\ y \ge \frac{1}{2} \end{cases}$$

Examples: from tropical polynomials to algebraic curves

$$p(x,y) = x^2 \oplus 3 \otimes x \oplus y$$

"tropical parabola"

 $p(x,y) = x \oplus y$ "tropical line"

Thank you for your attention!

